The GNN-internal MANTS meeting

Status of LUNI

Mingjun Chen

Institute of high energy physics, China Ruhr-University Bochum March 24th, 2024

LHAASO's bird view

Motivation

- HUNT project
- R&D work
- Summary

Neutrino observation will decisively solve the problem of the origin of cosmic rays!

- > LHAASO observed tens of gamma-ray sources above 100 TeV.
- Gamma-rays above 100 TeV can be produced in both leptonic and hadronic scenarios.

Main process:

$$p + p \longrightarrow N(\pi^{+} + \pi^{-} + \pi^{0}) + X$$
$$p + \gamma \longrightarrow n + \pi^{+}$$
$$\pi^{+} \longrightarrow \nu_{\mu} + \mu^{+} \longrightarrow \nu_{\mu} + (e^{+} + \bar{\nu}_{\mu} + \nu_{e})$$
$$\pi^{-} \longrightarrow \bar{\nu}_{\mu} + \mu^{-} \longrightarrow \bar{\nu}_{\mu} + (e^{-} + \nu_{\mu} + \bar{\nu}_{e})$$
$$\pi^{0} \longrightarrow 2\gamma$$

1st LHAASO Catalog: 43 UHE gamma-ray sources (>4σ).

* LHAASO Collaboration, 2021, Nature, 594, 33. * LHAASO Collaboration, 2024, ApJS, 271, 25.

2013 The first discovery of astrophysical high-energy neutrinos.

2018 First hint of association between neutrino excess and blazar TXS 0506+056 (3.5σ).

2019 The neutrinos from Seyfert II Galaxy NGC 1068 exceed the background at the level of 2.9σ.

2023 Signs of diffuse neutrinos in the milky way, $\sim 4\sigma$.

All-sky point source search with ten years data.

* IceCube Collaboration, 2023, Nature, 380, 6652

Energy spectrum of the astrophysical neutrino flux.

A ~30 km³ neutrino telescope with 2,300 strings

Discover the neutrino sources(> 100 TeV) in a couples of years.

Expected neutrino flux: ~ 10⁻¹² TeV/cm²/s@100 TeV Spectral index: ~ 3 @100 TeV

Specifications:

- Angular resolution: ~0.1° (tracks), <3°(cascades)
- Energy resolution: ΔlogE~0.3(tracks), ΔE~10-30% (cascades)

High-energy Underwater Neutrino Telescope

Preliminary design ($\lambda_a \sim 22 \text{ m@Baikal}$) :

- Area: $6 \times 6 = 36 \text{ km}^2$, $\sim 30 \text{ km}^3$
- D_{string} ~ 130 m
- D_{OM} ~ 36 m
- Length ~ 860 m
- ~ 2,304 strings
- 24 OMs/string, ~55K OMs

Possible layouts.

Optical module with 20-inch PMT

20-inch PMTs installed in LHAASO

20-inch PMT: TTS: ~7ns; QE: >25%

P/V: >2; Q: >100C

New OM is based on 20-inch PMT: 20-inch PMT in a 23-inch glass sphere.

Large photosensitive surface
 Larger spacing between OMs
 Larger volume with the same number of PMTs

- Wide dynamic range : 1 2,000PEs; Digital waveform output with 0.5GHz; > 60 KHz capability for single OM.
- White Rabbit time synchronization system: <1ns.

	Lake Baikal	South China Sea
Absorption length	~20 m	~25 m
Depth	~1366 m	~2500 m (better atmospheric muon background rejection)
Deployment Cost	~K\$ /string	High
Reparability	Work on the ice (low cost)	Difficult to be repaired
Power Supply cable	~10 km cable	~100 km cable or battery
Construction and Deployment	~5 years (Feb. to Apr. every year)	Rely on deep-ocean facilities

Lake Baikal

- Up-going: zenith > 87 deg
- More sensitive to point-like sources with declination δ from
 -50 degree to 30 degree, especially for the Galactic center.

• New 20-inch PMT with short neck

• 23-inch glass sphere

Ten centimeters shorted.

Passed 50Mpa pressure test.

Reproduction of Baikal-GVD events by Geant4-based 14 simulation program.

GVD210117CA Vertex pos: (75.00, 28.00, - 562.00), dir: (49.00, 57.00), energy: 246

Real events

Submitted to CPC,2024

Prototype test in South China sea

17⁰ N, 113^o 20E

4 & 56 OMs will deployed in South China Sea.

Summary

- Lots of great achievements in astrophysical neutrino observation. LHAASO discovered 43 UHE gamma-ray sources in the Milky Way.
- A 30 km³ neutrino telescope proposed for the galactic
 HE neutrino detection.

Start the prototype test in both Lake Baikal and South China Sea. CDR will be ready soon.

Thanks!

Detector Simulation

Simulation toolkits

- Neutrino interaction package.
- **Geant4**: simulating interactions of neutrinos and the secondary particles.
- Opticks: a GPU accelerated optical photon simulation for Geant4 using NVIDIA OptiX (at least 11 times faster than using Geant4 only).

Morphology

Left: Cascade event induced by an 1 PeV electron. Right: Track event induced by an 100 TeV muon.

Angular Resolution

The median mismatch angle between simulated muon and reconstructed direction.

Upper: visual track length below 2,000 m. Lower: visual track length above 2,000 m.

10-yr discovery potential Sgr A* (δ=-29 deg)

HAWC J1825-134 (δ=-13 deg)

2,220 20-in PMTs deployed in LHAASO-WCDA

WCDA: Water Cherenkov Detector Array

- Excellent time performance: TTS ~ 7 ns
 - High quantum efficiency: QE > 25%
- The largest photosensitive area: 20 inch
- Good Peak-to-valley ratio: P/V > 2.0
- Long lifetime: Q > 100 C
- Decrease the energy threshold from 300 GeV to 50 GeV
- Improve the sensitivity to transients sources
- Effective budget control
 - Made in China (NNV Technology Group Co., Ltd)